Nonlinear Dynamic System Identification into Wiener Model using Subspace Identification and Support Vector Machine

نویسندگان

  • Rasool Sadeghi
  • Mahnaz Hashemi
چکیده

In this article, a new blockoriented nonlinear identification method is proposed. This modeling method uses the Wiener model comprised of a linear dynamic block that is followed by a nonlinear static block. The linear block is described by the subspace identification algorithm whereas the nonlinear one is represented via the Least SquaresSupport Vector Machine. The proposed method is tested with a practical nonlinear chemical plant named as CSTR. A dataset of the input-output signals gathered from the system is applied to show the superiority of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Identification areas with inundation potential for urban runoff harvesting using the support vector machine model

     Rainfall-runoff from urban areas is one of the available water resources, which is wasted due to lack of attention and proper management. Besides, urban runoff excess of drains capacity causing many problems including inundation and urban environmental pollution. Therefore, harvesting this runoff can provide a part of the required water in urban areas, and also reduce flood and urban inund...

متن کامل

Wavelet Kernel Based on Identification for Nonlinear Hybrid Systems

This paper presents a new method based on wavelet for a class of nonlinear hybrid systems identification. Hybrid systems identification is composed of two problems; estimate the discrete modes or switch among the system modes and estimate continues submodels. In this paper, we assumed that haven’t any prior knowledge about data classification and submodels identification. Also the combining of ...

متن کامل

Dynamic Nonlinear System Identification Using a Wiener-Type Recurrent Network with OKID Algorithm

This paper presents a novel Wiener-type recurrent neural network with the observer/Kalman filter identification (OKID) algorithm for unknown dynamic nonlinear system identification. The proposed Wiener-type recurrent network resembles the conventional Wiener model that consists of a dynamic linear subsystem cascaded with a static nonlinear subsystem. The novelties of our approach include: (1) t...

متن کامل

Nonlinear Identification of Ph Process using Support Vector Machine

This paper discusses the application of support vector machine in the area of identification of nonlinear dynamical systems. The aim of this paper is to identify suitable model structure for nonlinear dynamic system. In this paper, Adaptive Neuro Fuzzy Inference Systems (ANFIS) and Support Vector Regression (SVR) models are applied for identification of highly nonlinear dynamic process. The res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016